Azadeh Zamanifar1
, Omid Kashefi2
and Mohsen Sharifi3
123Computer Engineering Department, Iran University of Science and Technology,
Tehran, Iran
ABSTRACT
Wireless sensor and actor networks (WSANs) consist of powerful actors and resource constraint sensors that are linked together in wireless networks. They mostly rely on actors to make proper decisions and perform desired coordination to achieve the goals of the entire network. They are usually deployed in critical applications and actor-actor network connectivity is thus vital to their effective utilization. Since WSAN applications are mostly deployed in harsh environments, actor nodes may fail and so partition their network. We propose a comparatively more efficient distributed approach, nicknamed AOM, to restore actor-actor connectivity upon the failure of any actor. We identify critical actors by combining the result of determining critical actors using the Stojmenovich’s method with the connectivity dominating set (CDS) of the network. This hybrid method of detecting critical actors helps in detecting critical nodes and candidate replacement actors more precisely while minimizing the total number of required messages for network restoration. The failure handling of actors is done in a proactive manner. Our proposed method minimizes both the restoration time of network and the total number of actor movements. When a failed actor is a critical node, actors in its neighborhood are relocated in a coordinated way to reconnect the actor network. The superiority of our approach compared to other works is shown by simulative experiments measuring two important parameters to WSANS, namely, the total number of transmitted messages and the total number of actor movements during actor-actor network reconnection process.
KEYWORDS
Wireless Sensor and Actor Network; Network Restoration; Actor Connectivity; Cut Vertex; Connectivity Dominating Set (CDS)
More Details....
No comments:
Post a Comment