Friday, December 27, 2019

CONTROLLING DELAY AT THE ROUTER BUFFER USING MODIFIED RANDOM EARLY DETECTION

Ahmad Adel Abu-Shareha

 Information Technology and Computing Department, Arab Open University (AOU),
Riyadh, Saudi Arabia

Abstract 

Active Queue Management (AQM) methods are used to manage the buffer of the network routers and avoid the problems caused by network congestion, especially packet loss. Among various AQM methods that have been proposed in the literature, Random Early Detection (RED)method has proved to stabilize the network performance under various traffic loads. However, as the primary concern of RED is to avoid loss when the router buffer overflowed, RED harms the delay at the router and increases the latency. Given that reducing delay is critical to some applications, such as online conferencing and broadcasting, RED needs to be adjusted to ease the delay problem. In this paper, RED is improved by monitoring the delay at the router buffer and implementing packet dropping to handle the issue of network delay and enhance the network performance. Accordingly, the modified method calculates and used a delay parameter with the RED to reduce the delay while maintaining the desirable RED’s characteristics. The experimental results showed that the proposed Delay-Controller Random Early Detection (DcRED) improved network performance under various traffic loads. Compared to RED, DcRED results in less delay, while maintaining the loss and dropping rates.

Keywords 

Delay, Congestion, Random Early Detection, Active Queue Management

                       

                                                  Full Text

Friday, December 20, 2019

Developing QoS by Priority Routing for Real Time Data in Internet of Things (IoT) Urban Scenarios

Radwan S. Abujassar

Information Technology and Computing (ITC) Arab Open University, Kuwait Branch

Abstract 

In networks, many application protocols such as CoAP, REST, XMPP ,AMQP have been proposed for IoT communication which includes p2p or S2S. In MANET Network convergence does the way for improvements in Internet of Things (IoT) communication with high potential for a wide range of applications. Each protocol focuses on some aspects of communication in the IoT. Hence, these application protocols have indicated of how IoT has integrated to enhanced and developed of a new service that require to guarantees the wide range offered by the quality of services. In this paper, we will introduce a smart pathway that can be bridge the gap between IoT services with its real data traffic. Therefore, we enhanced the MANET routing protocol for computing two or more paths to pass the more that one high priority real traffic data via these paths to improve the gloomy picture of this protocol in the context of IoT. In particular, the good services with high timely delivery of urgent data such as real time data environmental monitoring. After surveying the published and available protocol interoperability given for urban sensing. In this research, we have proposed a novel solution to integrate MANET overlays, and collaboratively formed over MANET, to boost urban data in IoT. Overlays are used to dynamic differentiate and fasten the delivery of high priority real application time data over low-latency MANET paths by integrating with the original specifications. Our experimental results showed the effectiveness on the network such as the overhead and network congestion. In addition, the initial results of the light-weight improved the routing protocol over the baseline protocols in terms of the delay of reciveing the packets between nodes which lead to increase the throughput by reducing loss packets.

Keywords 

Quality of Service (QoS), Adhoc on demand Distance Vector Alternative (ODVA), Open Link State Routing (OLSR),Internet Of Thing(IOT)

                       

                                                  Full Text

Wednesday, December 11, 2019

A NOVEL HYBRID OPPORTUNISTIC SCALABLE ENERGY EFFICIENT ROUTING DESIGN FOR LOW POWER, LOSSY WIRELESS SENSOR NETWORKS

Jayavignesh Thyagarajan and Suganthi K

School of Electronics Engineering, Vellore Institute of Technology, Chennai Campus, India

Abstract 

Opportunistic Routing (OR) scheme increases the transmission reliability despite the lossy wireless radio links by exploiting the broadcast nature of the wireless medium. However, OR schemes in low power Wireless Sensor Network (WSN) leads to energy drain in constrained sensor nodes due to constant overhearing, periodic beaconing for Neighbourhood Management (NM) and increase in packet header length to append priority wise sorted Forwarding Candidates Set (FCS) prior to data transmission. The timer-based coordination mechanism incurs the least overhead to coordinate among the FCS that has successfully received the data packet for relaying the data in a multi-hop manner. This timer-based mechanism suffers from duplicate transmissions if the FCS is either not carefully selected or coordinated. The focus of this work is to propose a hybrid opportunistic energy efficient routing design for large scale, low power and lossy WSN. This design avoids periodic 'hello' beacons for NM, limits constant overhearing and increase in packet header length. There are two modes of operation i) opportunistic ii) unicast mode. The sender node adopts opportunistic forwarding for its initial data packet transmission and instead of pre-computing the FCS, it is dynamically computed in a completely distributed manner. The eligible nodes to be part of FCS will be neighbour nodes at lower corona level than the sender with respect to the sink and remaining energy above the minimum threshold. The nodes part of FCS based on crosslayered multi-metrics and fuzzy decision logic determines its priority level to compute Dynamic Holding Delay (DHD) for effective timer coordination. The differentiated back off implementation along with DHD enables the higher priority candidate that had received data packet to forward the packet first and facilitates others to cancel its timer upon overhearing. The sender node switches to unicast mode of forwarding for successive transmissions by choosing the forwarding node with maximum trust value as it denotes the stability of the temporally varying link with respect to the forwarder. The sender node will revert to opportunistic mode to increase transmission reliability in case of link-level transmission error or no trustworthy forwarders. Simulation results in NS2 show significant increase in Packet Delivery Ratio (PDR),decrease in both average energy consumption per node and Normalized Energy Consumption (NEC) per packet in comparison with existing protocols.

Keywords 

Routing, Opportunistic, Energy Efficiency, fuzzy logic, scalability, communication protocol design

                       

                                                  Full Text

Thursday, December 5, 2019

MAINTAINING CLOUD PERFORMANCE UNDER DDOS ATTACKS

Moataz H. Khalil1, 2 , Mohamed Azab2 , Ashraf Elsayed3 , Walaa Sheta1, 2 , Mahmoud Gabr3 and Adel S. Elmaghraby1, 2
1CECS Department, University of Louisville, Kentucky, USA
2The City of Scientific Research and Technology Applications, Egypt

 3Department of Mathematics & Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract 

The popularity of cloud computing has been growing where the cloud became an attractive alternative rather than classic information processing system. The distributed denial of service (DDoS) attack is one of the famous attacks to cloud computing. This paper proposes a Multiple Layer Defense (MLD) scheme to detect and mitigate DDoS attacks which due to resource depletion. The MLD consists of two layers. The first layer has an alarm system send alarms to cloud management when DDoS attacks start. The second layer includes an anomaly detection system detects VM is infected by DDoS attacks. Also,MLD tested with a different DDoS attack ratio to show scheme stability. MLD evaluated by The energy consumption and the overall SLA violations. The results show the great effect of the MLD to reduce the energy consumption and the overall SLA violation for all datasets. Also, the MLD shows acceptable stability and reactivity with different DDoS attack ratio. 

Keywords 

Cloud Computing, Energy consumption, Service Level Agreement, DDoS attack, anomaly detection, Availability.

                       

                                                  Full Text